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Abstract. A Stanley–Reisner ring (equivalently, the quotient of a polynomial ring
k[x1, . . . , xn] by a radical monomial ideal) is a basic but central tool in Combinato-
rial Commutative Algebra. Almost 20 years ago, I introduced the notion of a squarefree
module, which is a module version of a Stanley–Reisner ring. This notion makes homo-
logical aspects of this area more systematic and deep. This report is a brief survey of
the squarefree module theory.

1. Introduction

Let S = k[x1, . . . , xn] be a polynomial ring over a field k, and ∅ ̸= ∆ ⊆ 2{1,...,n}

a simplicial complex (i.e., F ∈ ∆ and G ⊆ F imply G ∈ ∆). We call the quotient
ring k[∆] := S/I∆ for I∆ := (

∏
i∈F xi |F ̸∈ ∆) is the Stanley-Reisner ring of ∆. A

Stanley–Reisner ring is one of the most basic notions of Combinatorial Commutative
Algebra (see, [3, 11, 15]). Ring theoretic or homological properties of k[∆] are closely
related to the topology of the geometric realization |∆| of ∆. For example, we have
dimk[∆] = dim |∆| + 1, where dimk[∆] means the Krull dimension of k[∆]. Moreover,
we have the following.

• Recall the implications of homological (or ring theoretic) properties of noetherian
graded commutative k-algebras

Gorenstein* ⇒ Gorenstein ⇒ Cohen–Macaulay ⇒ Buchsbaum.

Except the Gorenstein property, the above properties of k[∆] only depend on the
topology of |∆| and char(k).

• If X := |∆| is homeomorphic to a connected manifold (with or without boundary),
then k[∆] is Buchsbaum over any k. (The converse is not true. In combinatorial
topology, there is the notion of a homology manifold. This is still stronger but
rather close to the Buchsbaum property of k[∆].)
In this case, k[∆] is Cohen–Macaulay if and only if H i(X;k) = 0 for all 0 < i <

dimX. For example, if X is homeomorphic to a real projective plane, then k[∆]
is Cohen–Macaulay if and only if char(k) ̸= 2.

• If |∆| is homeomorphic to a d-dimensional sphere, then k[∆] is Gorenstein* for
all k. This implies the symmetry of the h-vector (= a combinatorial data) of a
simplicial sphere.

This report is basically a brief survey of my (our) papers [1, 2, 16, 17, 18]. No version of this report
will be submitted for publication elsewhere.



• Unfortunately, the Stanley–Reisner ring theory is NOT compatible with the ho-
motopy theory.

Almost 20 years ago, to apply homological methods to the Stanley–Reisner ring theory
more systematically, I introduced the notion of a squarefree module. Since then this
notion has been used by several authors in this area. This report is a brief survey of the
squarefree module theory. I do not have enough time to introduce the results given by
other researchers, and only treat my own results here.

2. Squarefree modules

Consider the Nn-grading S =
⊕

a∈Nn Sa =
⊕

a∈Nn kxa, where xa =
∏n

i=1 x
ai
i is the

monomial with the exponent a = (a1, . . . , an). We denote the graded maximal ideal
(x1, . . . , xn) by m. For a Zn-graded module M and a ∈ Zn, Ma means the degree a com-
ponent of M , and M(a) denotes the shifted module with M(a)b = Ma+b. We denote the
category of S-modules by ModS, and the category of Zn-graded S-modules by *ModS.
For M,N ∈ *ModS and a ∈ Zn, set ∗HomS(M,N)a := Hom*ModS(M,N(a)). Then

∗HomS(M,N) :=
⊕
a∈Zn

∗HomS(M,N)a

has a Zn-graded S-module structure. If M is finitely generated, then ∗HomS(M,N) is
isomorphic to the usual HomS(M,N) as the underlying S-module. Thus, we simply
denote ∗HomS(M,N) by HomS(M,N) in this case. In the same situation, ExtiS(M,N)
also has a Zn-grading with ExtiS(M,N)a = Exti*ModS(M,N(a)).
For a ∈ Zn, set supp+(a) := {i | ai > 0} ⊆ [n] := {1, . . . , n}. We say a ∈ Zn is

squarefree if ai = 0, 1 for all i ∈ [n]. When a ∈ Zn is squarefree, we sometimes identify a
with supp+(a).

Definition 1 ([16]). We say a Zn-graded S-module M is squarefree, if the following
conditions are satisfied.

(1) M is Nn-graded (i.e., Ma = 0 if a ̸∈ Nn), and dimk Ma < ∞ for all a ∈ Nn.
(2) The multiplication map Ma ∋ y 7→ xby ∈ Ma+b is bijective for all a,b ∈ Nn with

supp+(a+ b) = supp+(a).

A squarefree module M is generated by its squarefree part
∪

F⊆[n]MF (moreover, it is

completely “determined” by its squarefree part). Thus M is finitely generated. For a
simplicial complex ∆ ⊆ 2[n], I∆ and S/I∆ are squarefree modules. A free module S(−F ),
F ⊆ [n], is also squarefree. In particular, the Zn-graded canonical module ωS = S(−1) of
S is squarefree, where 1 = (1, . . . , 1).

Let SqS denote the full subcategory of *ModS consisting of all the squarefree modules.
Then SqS is closed under kernels, cokernels and extensions in *ModS ([16, Lemma 2.3]).

Lemma 2 ([17]). For M ∈ SqS, its i-th syzygy module Syzi(M) and ExtiS(M,ωS) are
also squarefree for all i ≥ 0.

Most Zn-graded S-modules appearing in the Stanley–Reisner ring theory are squarefree
(with or without slight modification). 1

1If we forget Zn-grading, there is an important exception. See the last section of this report.



For a simplicial complex ∆ ⊊ 2[n],

∆∨ := {F ⊆ [n] | [n]− F ̸∈ ∆ }
is a simplicial complex again. Clearly, ∆∨∨ = ∆. This is a classical construction called
the (combinatorial) Alexander duality. In fact, |∆| is contained in the (n−2)-dimensional
sphere Sn−2 := | 2[n] −{[n]} |, and |∆∨| is homotopic to the complement Sn−2 − |∆|. This
duality is very useful in the Stanley–Reisner ring theory.

As shown by Miller [10] and Römer [13], the Alexander duality ∆ 7→ ∆∨can be extended
to the exact contravariant functor A : SqS → SqS. For M ∈ SqS and F ⊆ [n], the
component A(M)F is the k-dual of MF c , and the multiplication map A(M)F ∋ y 7→ xiy ∈
A(M)F∪{i} for i ̸∈ F is the k-dual of MF c−{i} ∋ y 7→ xiy ∈ MF c . Here F c := [n]− F . We
have A ◦A ∼= IdSqS and A(k[∆]) ∼= I∆∨ .

For the study of SqS, the incidence algebra of a finite partially ordered set (poset, for
short) is very useful. So we now recall basic properties of incidence algebras. Let P be
a finite poset. The incidence algebra Λ = I(P, k) of P over k is the k-vector space with
a basis {ex, y | x, y ∈ P with x ≥ y}. The k-bilinear multiplication defined by ex, y ez, w =
δy, z ex,w makes Λ a finite dimensional associative k-algebra. (The usual definition is
the opposite ring of our Λ. But we use the above definition for the convenience.) Set
ex := ex, x. Then 1 =

∑
x∈P ex and ex ey = δx,y ex. We have Λ ∼=

⊕
x∈P Λex as a left

Λ-module.
Let modΛ denote the category of finitely generated left Λ-modules. If N ∈ modΛ, we

have N =
⊕

x∈P Nx as a k-vector space, where Nx := exN . Note that ex, y Ny ⊆ Nx and
ex, y Nz = 0 for y ̸= z. If f : N → N ′ is a morphism in modΛ, then f(Nx) ⊆ N ′

x.

Proposition 3 ([18, Proposition 2.2]). Regard the power set 2[n] as a poset by inclu-
sions (i.e., 2[n] is the Boolean lattice), and set Λ := I(2[n],k). Then we have a category
equivalence

SqS ∼= modΛ.

If M ∈ SqS corresponds to N ∈ modΛ, then we have MF
∼= eFN as k-vector spaces

for F ⊆ [n].
The category modΛ behaves very nicely. In particular, we can easily describe indecom-

posable projectives and injectives. The next corollary is given by these descriptions. In
the sequel, for F ⊆ [n], set k[F ] := S/(xi | i ̸∈ F ) ∼= k[xi | i ∈ F ].

Corollary 4 ([17]). SqS is an abelian category with enough projectives and injectives.
An indecomposable projective (resp. injective) object in SqS is isomorphic to S(−F )
(resp. k[F ]) for some F ⊆ [n]. For any squarefree module M , both pd-dimSqS M and
inj-dimSqS M are at most n.

Moreover, a simple object in SqS is isomorphic to the canonical module ωk[F ] :=

Extn−#F
S (k[F ], ωS) of k[F ] for F ⊆ [n]. (In fact, [ωk[F ]]F ∼= k and [ωk[F ]]G = 0 for

all G ⊆ [n] with G ̸= F .)

Since S(−F ) is also projective in *ModS, the minimal projective resolution ofM ∈ SqS
in the category SqS is also the minimal projective (or free) resolution in *ModS. On the
other hand, k[F ] is not injective in *ModS (an injective object in *ModS is not finitely
generated as an S-module), and the relation between the injective resolution in SqS and



that in *ModS is difficult in general. However, the canonical module ωS behaves well in
this point of view. The minimal injective resolution of ωS ∈ SqS in the category SqS is
the following form

(2.1) I• : 0 −→ ωS −→ I0 −→ · · · −→ In −→ 0,

I i =
⊕
F⊆[n]

#F=n−i

k[F ],

and the differential map is the sum of the maps of ±π : k[F ] → k[F − {j}] for j ∈ F ,
where π is the canonical surjection.

Let ∗D• and D• be the minimal injective resolutions of ωS in the categories *ModS
and ModS, respectively. Then ∗D• is a Zn-graded dualizing complex of S, and D• is a
usual (non-graded) dualizing complex. (More precisely, it is more natural to consider the
translations ∗D•[n] and D•[n]. However, we do not care this point here.) It is well-known
that there is a quasi-isomorphism ∗D• → D•.

Lemma 5. There is a Zn-graded quasi-isomorphism I• → ∗D•.

By Proposition 3 and Corollary 4, the derived category Db(SqS) (∼= Db
SqS(*ModS))

behaves well.

Theorem 6 ([18, §3]). D(−) = RHomS(−, ωS) gives a contravariant functor from Db(SqS)
to itself satisfying D ◦D ∼= Id. For M ∈ SqS, D(M) is isomorphic to the complex

(2.2) I•(M) : 0 −→ I0(M) −→ I1(M) −→ · · · −→ In(M) −→ 0,

I i(M) =
⊕
F⊆[n]

#F=n−i

(MF )
∗ ⊗k k[F ]

in Db(SqS). Here (MF )
∗ is the dual k-vector space of MF , but its degree is 0 ∈ Zn. The

differential is composed of the maps

±v∗j ⊗k π : (MF )
∗ ⊗k k[F ] → (MF−{j})

∗ ⊗k k[F − {j}]

for j ∈ F , where v∗j is the k-dual of the multiplication map vj : MF−{j} ∋ y 7→ xjy ∈ MF

and π is the natural surjection k[F ] → k[F − {j}].

The latter half of the theorem is very useful in the explicit computation. The local
cohomology module H i

m(k[∆]), which is the graded k-dual of

Hn−i(D(k[∆])) ∼= Extn−i
S (k[∆], ωS)

is important in the Stanley–Reisner ring theory. Applying the above theorem to the
case M = k[∆], we get the Hochster’s formula for the Hilbert series of H i

m(k[∆]) ([3,
Theorem 5.3.8]).

Theorem 7 ([18, Theorem 3.10]). We have

(A ◦D)3 ∼= T n,

where T is the translation functor of Db(SqS).



Example 8. For F ⊆ [n], we have the following.

A ◦D ◦A ◦D ◦A ◦D (S(−F ))

= A ◦D ◦A ◦D ◦A (S(−F c))

= A ◦D ◦A ◦D (k[F ])

= A ◦D ◦A (ωk[F ])[#F − n]

= A ◦D (ωk[F c])[n−#F ]

= A (k[F c])[#F c − n− (n−#F ) ]

= A (k[F c])[−n ]

= S(−F )[n].

Remark 9. Let Λ be the incidence algebra of 2[n]. If N ∈ modΛ, then it is well-known that
Homk(N,k) has a right Λ-module (i.e., a left Λop-module) structure. But the opposite
ring Λop of Λ is isomorphic to Λ itself by Λop ∋ eF,G 7→ eGc,F c ∈ Λ. Thus Homk(−, k) gives
a contravariant functor from modΛ to itself. Through the equivalence modΛ ∼= SqS of
Proposition 3, Homk(−,k) corresponds to the Alexander duality A(−).

Similarly, RHomΛ(−,Λ) gives a contravariant functor from Db(modΛ) to itself via the
isomorphism Λ ∼= Λop. Through the equivalence modΛ ∼= SqS, RHomΛ(−,Λ) corre-
sponds to D.

Professor Osamu Iyama told me that the functor A ◦ D : Db(SqS) → Db(SqS) cor-
responds to the Nakayama functor Λ∗ ⊗L

Λ − : Db(modΛ) → Db(modΛ), and hence The-
orem 7 corresponds to the fact that Λ has the (n/3)-Calabi–Yau property. This fact
can be shown directly. In fact, for the quiver algebra kA2 of the quiver •−→•, we have
Λ ∼= (kA2)

⊗n as k-algebras. Moreover, it is well-known that kA2 has the (1/3)-Calabi–Yau
property2, hence (kA2)

⊗n has the (n/3)-Calabi–Yau property. I do not give a reference on
fractional Calabi–Yau property here, but I believe that the participants of this symposium
know it better than me.

3. Constructible sheaves associated with squarefree modules

If we regard 2[n] as a simplicial complex, it is an (n − 1)-simplex, and its geometric
realization B is homeomorphic to an (n − 1)-dimensional ball. For F ⊆ [n] with #F =
d > 0, |F | denotes the geometric realization |2F | ⊆ B. Let |F |o be the interior of |F |,
which is homeomorphic to a (d− 1)-dimensional open ball. Note that

B =
∪

∅≠F⊆[n]

|F |o

is a regular CW complex. For F ⊆ [n],

UF :=
∪

F⊆G⊆[n]

|G|o

is an open set of B. Note that {UF | ∅ ̸= F ⊆ [n] } is an open covering of B.

2More generally, kAm has the (m− 1)/(m+ 1)-Calabi–Yau property.



In [18], from M ∈ SqS, we constructed a sheaf M+ on B. More precisely, the assign-
ment

Γ(UF ,M
+) = MF

for each ∅ ̸= F ⊆ [n] and the restriction map

Γ(UG,M
+) = MG ∋ y 7−→ xF−G ∈ MF = Γ(UF ,M

+)

for ∅ ̸= G ⊆ F ⊆ [n] (equivalently, UG ⊃ UF ) defines a constructible sheaf. Note that M0

is “irrelevant” toM+. For the theory of constructible sheaves (especially, Poincaré-Verdier
duality), see [6].

For example, k[∆]+ ∼= j∗k|∆|, where k|∆| is the constant sheaf on |∆| with coefficients in

k, and j is the embedding map |∆| ↪→ B. Similarly, we have that (ωS)
+ ∼= h!kBo , where

kBo is the constant sheaf on the interior Bo of B, and h is the embedding map Bo ↪→ B.
Note that (ωS)

+ is the orientation sheaf of B with coefficients in k.
Let ∆ ⊆ 2[n] be a simplicial complex, and set X := |∆| ⊆ B. For M ∈ SqS, M is an

k[∆]-modules (i.e., ann(M) ⊃ I∆) if and only if Supp(M+) := {x ∈ B | (M+)x ̸= 0} ⊆ X.
In this case, we have

H i(B;M+) ∼= H i(X;M+|X)
for all i. Here M+|X is the restriction of the sheaf M+ to the closed set X ⊆ B.

The following theorems treat the local cohomology module H i
m(M) of M ∈ SqS. Since

it is the Zn-graded k-dual of the squarefree module Extn−i
S (M,ωS), the “anti-squarefree

part”
∪

F⊆[n][H
i
m(M)]−F determines H i

m(M).

Theorem 10 ([18, Theorem 3.3]). For M ∈ SqS, we have

H i(B;M+) ∼= [H i+1
m (M)]0 for all i ≥ 1,

and an exact sequence

(3.1) 0 −→ [H0
m(M)]0 −→ M0 −→ H0(B;M+) −→ [H1

m(M)]0 −→ 0.

In particular, for ∆ ⊆ 2[n] with X := |∆|. we have

[H i+1
m (k[∆])]0 ∼= H̃ i(X;k) for all i ≥ 0,

where H̃ i(X; k) denotes the ith reduced cohomology of X with coefficients in k.

Theorem 11 ([18, Theorem 3.5]). For M ∈ SqS and ∅ ̸= F ⊆ [n], we have

[H i+1
m (M)]−F

∼= H i
c(UF , j

∗M+) for all i ≥ 0,

where H i
c(−) stands for the cohomology with the compact support, and j : UF ↪→ B is the

embedding map. In particular, for ∆ ⊆ 2[n] with X := |∆|. we have

[H i+1
m (k[∆])]−F

∼= H i
c(X ∩ UF ;k) for all i ≥ 0.

Let Sh(B) be the category of constructible sheaves on B. Since the functor (−)+ :
SqS → Sh(B) is exact, it can be extended to Db(SqS) → Db(Sh(B)).

On the other hand, X := |∆| ⊆ B admits Verdier’s dualizing complex D•
X ∈ Db(Sh(X))

with coefficients in k. For example, D•
B is isomorphic to (ωS)

+[n− 1] in Db(Sh(B)).



Theorem 12 ([18, Theorem 4.2]). Set X := |∆|. If M ∈ SqS is a k[∆]-module, then we
have Supp(Extn−i

R (M,ωS)
+) ⊆ X and

Extn−i
R (M,ωS)

+|X ∼= Ext1−i(M+|X ,D•
X)

in Db(Sh(X)).

Corollary 13 ([18]). With the above notation, (D(k[∆][n−1]))+|X is isomorphic to D•
X .

Hence, for the complex I•(k[∆]) given by putting M = k[∆] to (2.2), (I•(k[∆]))+|X is
isomorphic to D•

X

If k[∆] is Buchsbaum with dimk[∆] = d, its canonical module ωk[∆] := Extn−d
S (k[∆], ωS)

is very important.

Corollary 14 ([18]). Set X := |∆| as above. Then we have the following.

(i) k[∆] is Buchsbaum if and only if Hi(D•
X) = 0 for all i ̸= − dimX.

(ii) If X is homeomorphic to a connected manifold with or without boundary (⇒ k[∆]
is Buchsbaum), then (ωk[∆])

+|X is the orientation sheaf of X with coefficients in k.
In particular, if X is homeomorphic to an orientable manifold then k[∆] ∼= ωk[∆]

in *ModS.

4. Applications

The purpose of this section is to introduce an example of an application of squarefree
modules. While the statements do not contain the term “squarefree modules”, it is hard
(maybe impossible) to prove them without this notion.

Definition 15 ([8, 9]). Let I ⊂ S = k[x1, . . . , xn] be a graded ideal. Set

λi,j(S/I) := µi(m, Hn−j
I (S)),

and call it the (i, j)-th Lyubeznik number of S/I. Here the right hand side means the i-th
Bass number of the local cohomology module Hn−j

I (S). (It is known that we always have
λi,j(S/I) < ∞, and λi,j(S/I) ̸= 0 implies 0 ≤ i ≤ j.)

Here I do not explain any background of this notion. However, this is an important
and difficult invariant. In general case, even λi,j(S/I) < ∞ is highly nontrivial, and one
has to use the D-module theory to show this.

For λi,j(k[∆]), we can show the following results using the squarefree module theory.

We only remark that λi,j(S/I) = λi,j(S/
√
I) for a general graded ideal I by definition,

so if one wants to know the Lyubeznik numbers of monomial ideals then it suffices to
consider λi,j(k[∆]). (If I ⊂ S is a radical monomial ideal, there is a simplicial complex
∆ ⊆ 2[n] such that I = I∆.)

Theorem 16 ([17, Corollary 3.10]). We have

λi,j(k[∆]) = dimk[Ext
n−i
S (Extn−j

S (k[∆], ωS), ωS)]0.

Theorem 17 ([1, Theorem 5.3]). For a simplicial complex ∆ ⊆ 2[n] and each i, j,
λi,j(k[∆]) only depends on the topology of |∆| and char(k).



Since the theory of Stanley–Reisner rings is very rich, it is a natural strategy to reduce
problems on general (i.e., non-radical) monomial ideals to those on radical monomial
ideals. This is a classical technique called “polarization”.

Set S̃ := k[xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ d ]. For a = (a1, . . . , an) ∈ Nn, xa denotes the
monomial

∏n
i=1 x

ai
i ∈ S. For a monomial xa ∈ S with deg(xa) ≤ d, set

pol(xa) :=
∏

1≤i≤n

xi,1xi,2 · · ·xi,ai ∈ S̃.

If I = (xa1 , . . . , xar) ⊆ S is a monomial ideal with deg(xai) ≤ d for all 1 ≤ i ≤ r, we set

pol(I) := ( pol(xai) | 1 ≤ i ≤ r) ).

For example, if I = (x2
1, x1x

2
2, x1x2x3, x

2
2x3) then

pol(I) = (x1,1x1,2, x1,1x2,1x2,2, x1,1x2,1x3,1, x2,1x2,2x3,1).

Note that
Θ := {xi,1 − xi,j | 1 ≤ i ≤ n, 2 ≤ j ≤ d } ⊆ S̃

gives the isomorphism S̃/(Θ) ∼= S induced by S̃ ∋ xi,j 7−→ xi ∈ S. Then pol(I) satisfies
the following properties.

(1) Through the isomorphism S̃/(Θ) ∼= S, we have S̃/(Θ)⊗S̃ S̃/ pol(I) ∼= S/I

(2) Θ forms a (S̃/ pol(I))-regular sequence.3

Set d := (d, d, · · · , d) ∈ Nn. Then the polarization is extended to a functor from the
category of positively d-determined S-modules in the sense of Miller [10] to the category

Sq S̃. The polarization functor essentially commutes with the canonical module dual
ExtiS(−, ωS). Combining this fact, Theorem 16, and a result in [4], we can show the
following.

Theorem 18 ([2, Theorem 5.1]). For a monomial ideal I ⊂ S, set h := dim(S̃/ pol(I))−
dim(S/I) = n(d− 1). Then we have

λi,j(S/I) = λi+h,j+h(S̃/ pol(I)).

for every i, j ∈ N.

5. Further Discussion

When we introduced the notion of a squarefree module almost 20 years ago, I thought
that most important modules appearing in the study of Stanley–Reisner rings are (essen-
tially) squarefree. However, I have changed my opinion.

If dim k[∆] = d, there is a set Θ = {θ1, . . . , θd} ⊆ k[∆]1 of linear forms such that
AΘ := k[∆]/(Θ) is artinian. Note that this ring is still Z-graded, but no longer Zn-
graded (since θi’s are not monomials). The artinian algebra AΘ is important when k[∆]
is Buchsbaum (e.g., |∆| is a manifold), especially when k[∆] is Gorenstein (e.g., |∆| is a
sphere).

In the theory of artinian graded k-algebras, the following condition has become very
popular in this decade.

3“Regular sequence” is very basic and important notion in commutative algebra.



Definition 19 ([5]). Let A =
⊕c

i=0 Ai be an artinian graded commutative k-algebra with
A0 = k. We say A satisfies the (strong) Lefschetz property, if there is a linear form y ∈ A1

such that the multiplication map

Ai ∋ x 7−→ yjx ∈ Ai+j

is either injective or surjective for all i, j ≥ 0.

Remark 20. Of course, this notion comes from algebraic topology. The cohomology rings
of “nice” manifolds have the Lefschetz property. In this case, the ring is Gorenstein by
Poincaré duality. However, in abstract setting, even if A is Gorenstein, it does not have
the Lefschetz property in general.

In the historical paper [15], it is shown that if ∆ comes from a simplicial polytope
then AΘ has Lefschetz property for some Θ (the proof uses a strong theorem of algebraic
geometry). At that time, people thought this idea can be used only in this case. However
the ring theoretic study on Lefschetz property is developing now, and has begun to give
powerful tools to the study of Stanley–Reisner rings (e.g., [7]). The standard reference of
this theory is [5], while it does not treat Stanley–Reisner rings so much.

However, the Lefschetz property is far from compatible with argument using squarefree
modules. More precisely, the operation k[∆] 7→ AΘ has been important from the early
stage of the study of Stanley–Reisner rings. Simple arguments using AΘ can be replaced
by those using squarefree modules. However, advanced technique such as the Lefschetz
property cannot be replaced. So I want to find a nice way to combine them.

Finally, I remark that the relation to the theory of toric manifolds is a very exciting
topic in the study on Stanley–Reisner rings now (e.g., [12]). Frankly I do not know
anything about this movement, but it might be an interesting problem to find a nice way
to apply squarefree modules to this direction.
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